Einsatzmöglichkeiten der flugzeuggetragenen Laser-Scanner

Ch. Briese, K. Kraus, G. Mandlburger, N. Pfeifer
Institut für Photogrammetrie und Fernerkundung der TU Wien

1. Einleitung

Die Laser-Distanzmessung ist eine Impulslaufzeitmessung. Die dreidimensionalen Koordinaten beziehen sich auf die Oberflächenelemente, die die Laserstrahlen reflektieren. Reflektionen erfolgen an Oberflächen, die sich dem jeweiligen Laserstrahl "in den Weg stellen", es können sein:
- die Blätter oder Äste der Bäume,
- die Kamine und Antennen auf den Häusern,
- die Masten der Straßenbeleuchtungen,
- die Dächer der Fahrzeuge,
- die Oberfläche der Grasdecke,
aber auch
- die Ackeroberfläche,
- das Gelände bei nicht zu dichter Vegetation,
- die von Fahrzeugen freie Straßenoberfläche.

2. Wienerwald (Projekträger: Magistratsabteilung 41 der Stadt Wien)

Über dieses Projekt wurde im Detail bereits berichtet (Kraus et al., 1997). Es war das erste Laser-Pilotprojekt, das am I.P.F. bearbeitet wurde. Es war Anlass, die Filtermethoden den spezifischen Eigenschaften der Lasermessungen in bewaldeten Gebieten anzupassen, d.h. eine schiefe Fehlerverteilung in die Interpolation und Filterung nach kleinsten Quadraten zur Ableitung eines digitalen Geländemodells (DGMs) einzuführen (Kraus, 1997).

Vor kurzem wurde dieses Projekt in zweifacher Hinsicht erweitert:

- Es wurde von einem kleinen Testgebiet ein zweiter Flug mit einer wesentlich höheren Punktdichte durchgeführt, um die dadurch erzielbaren Qualitätssteigerung feststellen zu können.

- Nachdem die aus Laserdaten abgeleiteten DGMs - wegen der fehlenden geomorphologischen Strukturlinien – in Tälern unbefriedigend sind, war eine Methode zur Beseitigung der zwangsläufig entstehenden künstlichen Mulden gesucht.

2.1 Qualitätssteigerung durch eine höher Punktdichte

Beim Flug 1999 wurde der TopoSys-Scanner eingesetzt, der eine Punktdichte in Flugrichtung von 0.20 m und quer zur Flugrichtung von 1,7 m lieferte. (Beim Flug 1996 war der Toposcan-Scanner mit einem mittleren Punktabstand von 3.1 m im Einsatz.) Die Abbildung 2-1 zeigt die offensichtliche Qualitätssteigerung. Links sind die Originaldaten des Fluges 1999 als Schräglichtschummern wiedergegeben, in der Mitte das aus diesen Daten abgeleitete DGM und rechts zum Vergleich das DGM aus dem Flug 1996. (Diese Abbildungen und die folgenden Abbildungen wurden mit SCOP hergestellt; SCOP wird von der INPHO, Stuttgart, und dem I.P.F. gemeinsam entwickelt.)
Abb. 2.1: Originaldaten 1999 (einem 1m-Raster zugeordnet)/davon abgeleitetes DGM 1999/DGMaus dem Flug 1996

Die absolute Genauigkeit wurde mittels 271 Kontrollpunkten, die terrestrisch von der MA41 bestimmt wurden, ermittelt. Der mittlere Höhenfehler verbesserte sich von \(\pm 29 \text{ cm} \) auf \(\pm 18 \text{ cm} \).

Mit diesem Projekt wurde unter Beweis gestellt, dass die topographische Geländeaufnahme in bewaldeten Gebieten in einer sehr hohen Qualität auf wirtschaftliche Weise mittels Laser-Scanner bewältigt werden kann.

2.2 Muldenelimination entlang der Täler

Abb. 2-2: Laser DGM (Schräglichenschummerung mit Höhenstufen) mit künstlichen Mulden entlang der Täler

Abb. 2-3: DGM nach Elimination der künstlichen Mulden

Mit diesem Algorithmus steht ein Verfahren zur Verfügung, das auch in Tälern mit dichtem Baum- und Strauchbestand geomorphologisch sehr hochwertige DGMe liefert.

3. Aulandschaft an der Donau (Projektträger: Wasserstraßendirektion Wien)

Abb. 3-1: Originaldaten 26./27.3.1999/Originaldaten 23.4.1999/DGM 23.4. 1999

Am I.P.F. wurden die Daten gefiltert (Abb. 3-1, rechts, zeigt ein aus dem ungünstigen April-Flug abgeleitetes DGM). Aufgrund von 108 Kontrollpunkten, die die Wasserstraßendirection zur Verfügung gestellt hat, wurden die Genauigkeiten der DGM's ermittelt. Im Gebiet des März-Fluges ergab sich eine Standardabweichung von ≈19 cm, im Gebiet des April-Fluges eine Standardabweichung von ≈31 cm.

Mit diesem Projekt wurde unter Beweis gestellt, dass auch im dichten Auwald mit Laser-Scannern qualitativ hochwertige DGM's erstellt werden können. Allerdings sollte man die Befliegung vor dem Laubausbruch durchführen.

4. Grenzoder (Projekträger: Bundesanstalt für Gewässerkunde, Koblenz, sowie das Landesvermessungsamt und das Landesumweltamt in Brandenburg, Potsdam)

In diesem Gebiet ist der Hochwasserschutz von großer Bedeutung. Man entwickelt Wasserstandvorhersagemodelle. Zu diesem Zweck benötigt man

- ein DGM im Flussvorland einschließlich des komplizierten Buhnenbereiches,
- ein DGM der Flussohle und
- ein digitales Wasserpegel-Modell (DWM).

Im Folgenden wird nur auf die Ableitung des Buhnen-DGM's und des DWM's aus Laserdaten eingegangen.

Anschließend wurde mit allen Laser-Punkten – einschließlich der ursprünglichen Laser-Punkte auf der Wasseroberfläche – ein Oberflächenmodell berechnet. Von diesem Oberflächenmodell wurde das DWM, das zur Erreichung eines Verschnittes vorher um 20 cm angehoben wurde, mit SCOP-INTERSECT subtrahiert. Die Nulllinie dieses Differenzenmodells ist die gesuchte Wasser-Land-Grenze (WLG). Abbildung 4-1 zeigt die auf diese Weise automatisiert gefunden WLG. Mit dieser WLG können die auf den Buhnen liegenden Laser-Punkte ausgewählt werden.
Abb. 4-1: Wasser-Land-Grenze (WLG) gemeinsam mit einem digitalen Orthophoto

Damit liegen die Voraussetzungen für die Modellierung der Buhnen vor. Abbildung 4-2 zeigt eine geschummerte Buhne mit einem 20 cm Höhenlinienintervall. Abbildung 4-3 zeigt die gleiche Buhne in Form von Querprofilen.

Abb. 4-2: Geschummertes DGM einer Buhne, Laserpunkte in schwarz, 20 cm Höhenlinienintervall

5. Wien-Erdberg (Projekträger: Magistratsabteilung 41 der Stadt Wien)

Mit diesem Projekt wurde einerseits die Problemstellung einer DGM-Ermittlung in verhältnismäßig dicht bebauten Gebieten behandelt. Andererseits war von Interesse, inwieweit aus Laser-Scanner-Daten digitale Stadtmodelle erstellt werden können.
Es wurde die Firma TopoSys mit dem Flug beauftragt. Der Punktabstand in Flugrichtung betrug 10 cm, quer zur Flugrichtung 97 cm. Mit SCOP wurde daraus zunächst ein Oberflächenmodell mit einem 0.5 m-Raster gebildet (Abb. 5-1).

Abb. 5-1: Perspektive eines Oberflächenmodells mit einem 0.5m-Raster

Man erkennt eine detaillierte Modellierung der Gebäude; auf den Straßen sieht man die parkenden Autos; im Vordergrund befindet sich ein Park mit Bäumen. Es war eine große Herausforderung, aus diesen Daten die Gebäude, Bäume, Autos, etc. zu eliminieren. Die Herren Briese und Pfeifer haben in der SCOP-Umgebung eine auf solche Datensätze zugeschnittene Filtermethode entwickelt, die demnächst publiziert werden wird. Das Ergebnis für den Ausschnitt 5-1 zeigt Abbildung 5-2.

Abb. 5-2: Perspektivansicht des aus den Daten der Abb. 5-1 abgeleiteten DGMs; manuell wurden lediglich eine Böschungsoberkante und eine Böschungsunterkante eingeführt

In dem gesamten Gebiet von 2.5 km² wurden 816 Kontrollpunkte von der MA41 bestimmt. Das DGM besitzt folgende Höhengenauigkeiten (Standardabweichungen):

- Im Gesamtgebiet ±7,1 cm.

Mit diesem Projekt wurde der Beweis erbracht, dass aus Laser-Scanner-Daten auch in verhältnismäßig eng bebauten Gebieten sehr genaue DGMs abgeleitet werden können.

Abb. 5-3: Dreidimensionales digitales Stadtmodell mit einer überlagerten Textur aus einem digitalen Orthophoto

6. Zusammenfassung

Referenzen:

Dank: Die Grundlagenforschung zur Auswertung von Laser-Scanner-Daten wird vom Fonds zur Förderung der wissenschaftlichen Forschung unter dem Projekt "Dreidimensionale Topographische Informationssysteme" (Projekt Nr. P14083-MAT) unterstützt.